A comparative test of the correlated evolution of flightlessness and relative brain size in birds
نویسندگان
چکیده
Secondary flightlessness has evolved independently many times in birds. Morphological changes in the pectoral girdle and flight feathers and changes in body size have been associated with the evolution of flightlessness, and it has also been suggested that flightless birds have relatively small brains. We therefore tested whether flightlessness is related to changes in relative brain size. Relative brain size was compared between volant and flightless species using both conventional statistics and modem comparative methods within nine taxonomic groups. No significant difference was found between flightless and volant species in six of these groups, regardless of whether body mass or tibiotarsal measurements were used as estimates of body size. Species with relatively smaller brains compared with their volant relatives were the great auk Pinguinus impennis, the kakapo Strigops habroptilus and some species of penguin. Thus, we found no evidence of a general correlation between the evolution of secondary flightlessness and the evolution of relatively small brains in birds. This suggests that neural requirements are not significantly different between flightless and volant species, although our methods may have overlooked subtle neurological changes that do not result in markedly different endocranial volumes.
منابع مشابه
Brains, innovations and evolution in birds and primates.
Several comparative research programs have focused on the cognitive, life history and ecological traits that account for variation in brain size. We review one of these programs, a program that uses the reported frequency of behavioral innovation as an operational measure of cognition. In both birds and primates, innovation rate is positively correlated with the relative size of association are...
متن کاملDiversity in olfactory bulb size in birds reflects allometry, ecology, and phylogeny
The relative size of olfactory bulbs (OBs) is correlated with olfactory capabilities across vertebrates and is widely used to assess the relative importance of olfaction to a species' ecology. In birds, variations in the relative size of OBs are correlated with some behaviors; however, the factors that have led to the high level of diversity seen in OB sizes across birds are still not well unde...
متن کاملLongevity is associated with relative brain size in birds
Brain size of vertebrates has long been recognized to evolve in close association with basic life-history traits, including lifespan. According to the cognitive buffer hypothesis, large brains facilitate the construction of behavioral responses against novel socioecological challenges through general cognitive processes, which should reduce mortality and increase lifespan. While the occurrence ...
متن کاملSocial life, evolution of intelligence, behaviour and human brain size
Social life is one of the most critical factors of the evolution of the behavior of non-human primates and humans. Several factors, such as an increase in brain size, adaptive modules, and grooming, are related to the complexities of social groups. Although some scientists have mentioned foraging as a rival hypothesis for the evolution of behavior, in this research, we tried to investigate the ...
متن کاملRelative Brain Size and Its Relation with the Associative Pallium in Birds.
Despite growing interest in the evolution of enlarged brains, the biological significance of brain size variation remains controversial. Much of the controversy is over the extent to which brain structures have evolved independently of each other (mosaic evolution) or in a coordinated way (concerted evolution). If larger brains have evolved by the increase of different brain regions in differen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008